

Effect of moisture on fluid and granular P diffusion in different soils

D. Montalvo, F. Degryse, **Sola Ajiboye** & Mike McLaughlin

Introduction

- Strong fixation of P in soils is well known to reduce efficiency of P fertilizers
- Fluid P fertilizers outperform granular fertilizers in calcareous soils (Holloway et al., 2001)
 - attributed to reduced precipitation and enhanced diffusion (Lombi et al, 2004)

Introduction....

zone

zone

Introduction

- Strong fixation of P in soils is well known to reduce efficiency of P fertilizers
- Fluid P fertilizers outperform granular fertilizers in calcareous soils (Holloway et al., 2001)
 - attributed to reduced precipitation and enhanced diffusion (Lombi et al, 2004)
- However, effectiveness of fluid fertilizers in other type of soils and different moisture content is unclear

Objectives

 Investigate diffusion of P from granular and fluid fertilizers in a range of soils, using a newly developed visualisation technique

 Investigate how <u>moisture content</u> affects the diffusion of P from granular and fluid fertilizers

Selected soils

Location	Order	pH (H ₂ O)	Alox	Fe _{ox}	ОС	CaCO ₃	Clay
					%		
North-NZ	Andisol	5.7	4.20	0.82	8.5	<0.2	7
Mt Schank	Andisol	6.5	1.75	0.82	7.0	<0.2	22
Greenwood	Oxisol	5.9	1.73	0.41	4.4	<0.2	13
Redvale	Oxisol	6.4	0.23	0.22	1.0	<0.2	61
Kingaroy	Oxisol	5.6	0.23	0.26	1.8	<0.2	41
Pt Kenny	Calcic Inceptisol	8.7	0.02	0.01	2.8	28	3
Monarto	Alfisol	7.9	0.04	0.03	1.0	< 0.2	8

Visualization technique

Fe-oxide impregnated filter paper

- Development of Fe-ox paper (Cutting & Roth, 1973)
 - 30 min in 1% ammonium-molybdate
 - 15 min in acid (1 N HNO $_3$) 1% amm.-molybdate + malachite green-oxalate solution (15 min)
 - $-15 \text{ min in } 5 \text{ N H}_2\text{SO}_4$

Calibration of technique

Colour of paper ~ P solution concentration

Visualization of P diffusion

Green spots digitized using an imaging software GIMP v. 2.6.11

Exp. 1: Effect of P source on diffusion

- 5 soils: 1 Andisol, 2 Oxisols, 1 Calcic Inceptisol, and 1
 Alfisol
 - Treatments (3 replicates):
 - Granular: SSP, TSP, MAP,DAP, MES10
 - Fluid: TG-MAP (200 μL), TG MAP (100 μL), APP (44 μL)
 - All added at 9.2 mg P per Petri dish

- Visualization at 7 and 35 d
- Granule removed and digested

Exp. 1: P sorption isotherms

>

Source effect on P diffusion (day 7)

Slide 16

→ Exp 1: Summary

- There was a greater diffusion of P from fluid than granular sources in 3 of the soils
 - except in North-NZ (Andisol; strongest sorption) and Monarto (Alfisol; weakest sorption)
- There was lesser diffusion for Ca-phosphates (TSP, SSP) than ammonium phosphates (MAP, DAP) in the calcareous soil

→ Exp. 2: Effect of source and moisture

- 3 soils: Andisol, calcic Inceptisol, and Alfisol
- Treatments:
 - -80% of θ_{sat} :
 - Granular: MAP, DAP, SSP
 - Fluid: TG-MAP (200 μl), APP (44 μL)
 - -55% of θ_{sat} :
 - Granular: MAP
 - Fluid: TG-MAP (200 μL)

Concentric sampling: total, labile and solution P

Exp. 2: P sorption isotherms

>

Exp. 2: Visualization (day 7)

High θ

MAP

DAP

SSP

APP

fIMAP 200μI Mt Schank (Andisol)

Pt Kenny (calcic Incept)

Monarto (Alfisol)

Low θ MAP fIMAP

 $200 \mu l$

P source effect – (Calcareous)

- Fluid MAP > APP > DAP ≥ MAP > SSP
- Fixation (likely P precipitation with Ca):
 SSP > MAP > DAP > APP > flMAP

P source effect – (Andisol)

- Fluid MAP > APP > DAP ≈ MAP ≈ SSP
- Little fixation

Effect of moisture – (Calcareous)

	% added P f	ixed at <7.5 mm
	MAP	Fluid MAP
Wet	44	7
Dry	57	41
Source		***
Moisture		***
Source x moisture		*

Less precipitation at high moisture content, especially with fluid MAP

Effect of moisture – (Andisol)

	% added P fixed at <7.5 mm			
	MAP	Fluid MAP		
Wet	1	0		
Dry	12	0		
Source		ns		
Moisture	ns			
Source x moisture	ns			

Strong sorption but little precipitation in the Andisol; no effect of moisture content or source on precipitation

Summary

- There was a reduced fixation of P in calcareous soil with fluid P, especially under wet soil conditions.
- There was more fixation of P in calcareous soil with SSP/TSP than with MAP/DAP (likely formation of Ca-P precipitates)
- Overall, there was a greater diffusion of P from fluid P than from granular P in most soils.

Conclusion

- Less precipitation is likely to enhance fertilizer efficiency, esp. in wet calcareous soils
- Enhanced diffusion of P from liquid P in soils with strong sorption but little precipitation may have agronomical benefits. Further work will be carried out.

Acknowledgments

- Fluid Fertilizer Foundation, ARC, and SAGIT for funding
- The Mosaic Company for supplying MES10
- Leo Condron, Roger McLenaghen, and Mike Bell for soil collections in AUS and NZ
- Bogumila Tomczak, Deepika Setia, Colin Rivers, and Caroline Johnston for technical assistance

Thanks for your attention

Ca enhances fixation

 There is less diffusion and more fixation for SSP than MAP in the Kingaroy soil:

